Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Managing large-scale projects in biomolecular visualization education presents unique challenges, especially when involving many contributors who generate resources over time. BioMolViz is a diverse group of faculty from multiple institutions promoting biomolecular visualization literacy, and our goal was to create a collaboratively designed repository of assessments to allow evaluation of students’ visual literacy skills. As we expanded our network and engaged large numbers of educators through online and in-person workshops and working groups, assessment ideas and revisions became challenging to organize. Our growing repository required a method to 1) track revisions, expert-panel reviews, and field-testing results, and 2) ultimately publish hundreds of visual literacy assessments. As we navigated this new space, we sought to streamline our approach, while continuing to engage valuable colleagues with varying levels of comfort with technology. Through collaboration tools, project management software, and a series of fits and starts, the internal team established a structured workflow that efficiently guided assessment items from development to public access. Project management software enabled effective collaboration across team members and ensured transparency and efficiency in tracking each item’s progress. We detail the trial-and-error process that enabled collaborative assessment design, our breakthrough in the identification of software that suited the project needs, and the process of guiding developers to create the repository we envisioned. Our workflow analysis offers a model for leveraging project management tools in similar educational contexts and optimizing database design.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Westenberg, Dave J (Ed.)ABSTRACT Molecular case studies (MCSs) are open educational resources that use a storytelling approach to engage students in biomolecular structure-function explorations, at the interface of biology and chemistry. Although MCSs are developed for a particular target audience with specific learning goals, they are suitable for implementation in multiple disciplinary course contexts. Detailed teaching notes included in the case study help instructors plan and prepare for their implementation in diverse contexts. A newly developed MCS was simultaneously implemented in a biochemistry and a molecular parasitology course at two different institutions. Instructors participating in this cross-institutional and multidisciplinary implementation collaboratively identified the need for quick and effective ways to bridge the gap between the MCS authors’ vision and the implementing instructor’s interpretation of the case-related molecular structure-function discussions. Augmented reality (AR) is an interactive and engaging experience that has been used effectively in teaching molecular sciences. Its accessibility and ease-of-use with smart devices (e.g., phones and tablets) make it an attractive option for expediting and improving both instructor preparation and classroom implementation of MCSs. In this work, we report the incorporation of ready-to-use AR objects as checkpoints in the MCS. Interacting with these AR objects facilitated instructor preparation, reduced students’ cognitive load, and provided clear expectations for their learning. Based on our classroom observations, we propose that the incorporation of AR in MCSs can facilitate its successful implementation, improve the classroom experience for educators and students, and make MCSs more broadly accessible in diverse curricular settings.more » « less
-
A brief glance through molecular biology and biochemistry textbooks underscores the importance of interpreting visual images in the molecular life sciences. In fact, biomolecular visual literacy has been deemed a threshold concept, essential for student success in the field. As one example, grasping the information displayed in visual representations is a gateway to a deep understanding of structure-function relationships, a core concept in biology education. Despite much interest, few studies have examined the assessment of visual literacy skills in the area of biomolecules. Ten years ago, BioMolViz began an initiative to improve biomolecular visualization instruction and assessment, which focused on developing validated assessments to probe students' visual literacy skills. In 2023, we introduced the BioMolViz Library, a repository where instructors can access the instruments built by our community. A subset of these assessments were administered in classrooms in a pilot field test during the 2022–2023 academic year. We gained invaluable information from both quantitative and qualitative data collected. Lessons learned from this first classroom test guided the design of the 2023–2024 large-scale field testing we describe here with over ten partner institutions, high enrollment classes, and an increased number of items per survey. We present the results of our analysis of item difficulty, discrimination, and distractor analysis, alongside a robust analysis of the influence of gender and race/ethnicity on student performance. To improve the statistical power of the study, we exchanged open-ended written feedback for an increased number of assessment items administered on each survey. However, recognizing the value of student feedback obtained through a mixed methods analysis from our 2022–2023 study, we followed up with focus groups to explore the perceptions and problem solving process of both low- and high-performing students. We present the results of our assessment validation, including an analysis of the influence of learner level, gender identity, and race/ethnicity on performance. We include suggestions for equitable and inclusive assessment methods as we continue to strive to improve visual literacy instruction. This material is supported by the National Science Foundation (NSF) under grants RCN-UBE #1920270 and NSF-IUSE #1712268.more » « less
-
Jodie Jenkinson, Susan Keen (Ed.)While visual literacy has been identified as a foundational skill in life science education, there are many challenges in teaching and assessing biomolecular visualization skills. Among these are the lack of consensus about what constitutes competence and limited understanding of student and instructor perceptions of visual literacy tasks. In this study, we administered a set of biomolecular visualization assessments, developed as part of the BioMolViz project, to both students and instructors at multiple institutions and compared their perceptions of task difficulty. We then analyzed our findings using a mixed-methods approach. Quantitative analysis was used to answer the following research questions: (1) Which assessment items exhibit statistically significant disparities or agreements in perceptions of difficulty between instructors and students? (2) Do these perceptions persist when controlling for race/ethnicity and gender? and (3) How does student perception of difficulty relate to performance? Qualitative analysis of open-ended comments was used to identify predominant themes related to visual problem solving. The results show that perceptions of difficulty significantly differ between students and instructors and that students’ performance is a significant predictor of their perception of difficulty. Overall, this study underscores the need to incorporate deliberate instruction in visualization into undergraduate life science curricula to improve student ability in this area. Accordingly, we offer recommendations to promote visual literacy skills in the classroom.more » « less
An official website of the United States government
